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Abstract

The present study is aimed at shape design of a millimeter-scale air channel for increasing heat transfer to the air from the heated
channel wall and reducing pressure drop between the inlet and the outlet. The approach is developed by combining a direct problem
solver with an optimization method. A two-dimensional theoretical model is used to develop a direct problem solver, which provides
the numerical predictions of the thermal and flow fields associated with the varying shape profile during the iterative optimization pro-
cess. Meanwhile, the simplified conjugate-gradient method (SCGM) is used as the optimization method which continuously updates the
shape until the objective function is minimized. In this paper, a method based on a point-by-point technique for constructing the shape
profile is employed. This method is particularly suitable for determining the irregular profiles that cannot be approximated by the poly-
nomial functions. The optimal shapes at different inlet velocities are obtained. It is found that the search process is robust and always

leads to the same optimal solution regardless of the initial guess.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Inverse methods are often used in heat transfer analysis
to determine parameters which are difficult or impossible to
measure directly, from carefully selected experimental mea-
surements which can be more easily carried out. The devel-
opment of the inverse heat transfer problems (IHTP)
received considerable impetus from the space program
starting from about 1956. A Russian paper presented by
Shumakov [1] solving the heating process of a solid body
by the IHTP approach was translated in 1957. Later, Stolz
[2] dealt with the inverse heat conduction problem for cal-
culating the heat transfer rates during quenching process
from the objects with simple geometries. Nowadays, the
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IHTP approach has been used to determine the unknown
boundary temperature [3], surface heat flux [4,5], internal
heat generation [6], contact resistance [7], and thermal
properties of the working mediums [8,9].

Likewise, the shape design problems are also regarded as
an important kind of IHTP problems. Practical applica-
tions of the shape design problems include the optimization
for the geometry of the power systems [10,11], the shape
design of thermal and fluid units [12-17], and shape identi-
fication for unknown bodies [18]. In general, the problems
raised in the practical shape design problems are normally
to find an optimal geometry for a heat transfer system so as
to increase the thermal performance or to meet some spe-
cific heat transfer requirements. Nowadays, there are a
number of optimization methods available, such as the
growth-strain method [19], the singular superposition
method [20], the level set method [21], and the multi-objec-
tive optimization method [22], which can be used to yield
the optimal designs for different devices.
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Nomenclature
a; undetermined coefficients to optimize
by, b, profile coefficients of shape function 1

1, ¢, 3, ¢4 profile coeflicients of shape function 2
Cy, C, weighting factors

Cp specific heat, 1.004 kJ/(kg K)

channel depth, m

channel width function, m

inlet channel width, 1.8 mm

outlet channel width, m

arithmetic average channel width

objective function

thermal conductivity, 2.5743 x 1072 W/(m K)
length of channel, 10 mm

arc length of the designed adiabatic wall, m
outward normal coordinate to the designed wall
surface

pressure, Pa

average inlet pressure, Pa

average outlet pressure, 0 Pa

Reynolds number, pVii/u

air temperature, K
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T; average inlet air temperature, 298 K
T, average outlet air temperature, K
Tw heated wall temperature, 328 K

1L low temperature, 298 K

u velocity in x-direction, m/s
v velocity in y-direction, m/s
V; inlet velocity, m/s

4 velocity vector, ui + v

X, y, z rectangular coordinates

Greek symbols

b search step size

Y conjugate gradient coefficient

m dynamic viscosity, 1.8135 x 107> N s/m?>
T search direction

p air density, 1.205 kg/m?

T shear stress, kN/m?

Superscript

n iteration number

In recent years, heat transfer to a fluid in a small channel
has received great attention in the heat transfer area as well
as in industry. It is well known that the convective heat
transfer coefficients are inversely proportional to the
hydraulic diameter under laminar flow at a constant heat
transfer rate; therefore, smaller channels are capable of
providing higher heat transfer coefficients and hence
greatly reducing the thermal resistance to the heat flow in
the compact heat exchangers. Millimeter-scale channels,
commonly having hydraulic diameters of 0.5-3 mm, are
useful not just in the compact heat exchangers, but also
in the electronic cooling systems and the fuel cells. Wambs-
ganss et al. [23] performed two-phase flow experiments
with air/water mixtures in a small rectangular channel mea-
suring 9.52 x 1.59 mm for applications to compact heat
exchangers. In this paper, pressure drop data are presented
as a function of both mass quality and Martinelli parame-
ter and are compared with the existing correlations. Lately,
heat transfer and pressure drop for boiling water flow in a
millimeter-scale circular copper channel of 0.706-mm
diameter are measured by Campbell and Kandlikar [24].
Recently, Bahrami and Yovanovich [25] investigated the
pressure drop of a fully-developed, laminar, incompressible
flow in the smooth millimeter- and micrometer-scale chan-
nels of arbitrary cross-section is investigated. An approxi-
mate model is proposed that is used to predict the
pressure drop for a wide variety of cross-section shapes.

Based on the existing information, it is recognized that a
smaller channel leads to higher heat transfer rate; however,
the pressure drop between the inlet and the outlet of the

channel is also greatly increased. It is also found that the
pressure drop is greatly dependent on the geometry of the
channel. The pressure drop, representing the loss of pres-
sure in a compressed air system due to friction or restric-
tion, becomes severe particularly in the millimeter- and
micrometer-scale channels. In general, a significant reduc-
tion in pressure drop without a remarkable loss in heat
transfer is desired.

Therefore, design for the shape profile of the air channel
for obtaining a lower pressure drop between the inlet and
the outlet while still increasing the heat transfer to the air
from the heated channel wall is attempted in the present
study. The numerical design approach is developed by
combining a direct problem solver with an optimization
method. A two-dimensional theoretical model is used to
develop the direct problem solver for predicting the ther-
mal and flow fields associated with the varying shape pro-
file during the iterative optimization process. On the other
hand, the simplified conjugate gradient method (SCGM) is
used as the optimization method. The SCGM method, pro-
posed by Cheng and Chang [26], is capable of handling the
objective functions defined in different forms, and thus it
widens the flexibility of the application of the optimization
method. In the SCGM method, the sensitivity of the objec-
tive function to the designed variables is firstly evaluated,
and then by giving an appropriate fixed value for the step
size, the optimal design can then be carried out without
overwhelming mathematical derivation. Lately, this
method was successfully employed by the same group of
authors [27] in the inverse heat convection problem for
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Heating
element

Fig. 1. A millimeter-scale air heater with two symmetric heating channels.

the shape design of a cylinder with uniform temperature
distribution on the outer surface.

Fig. 1 shows a millimeter-scale air heater with two sym-
metric heating channels. Each channel is of width /4 and
length L. Air flow enters the channels at a low temperature
T1. and with a uniform velocity of V;. The inlet and outlet
pressures are denoted by P; and P,, respectively. Placed in
between the two channels is a heating element. In practices,
electric heating or heat transfer oil at a high temperature
(TH) can be utilized as the heat source for the heating ele-
ment. When the aspect ratio of the channels, L/h, is small,
a nearly constant temperature along the surface of the
heating element can be ensured. On the opposing wall,
thermal insulation is used to form an adiabatic boundary
to prevent heat loss. The channel width / is a function of
x and is denoted by /(x). Note that /(x) is treated as the
channel shape function for the adiabatic wall which is to
be designed in this study to minimize the objective func-
tion. The objective function must be defined in terms of
the pressure drop and the heat transfer rate as well so that
the channel shape can be designed to fulfill the design
purpose.

In this study, a method based on a point-by-point tech-
nique for constructing the shape profile is employed. This
method is used to determine the irregular profiles that can-
not be approximated by the polynomial functions. The rel-
ative performance of the point-by-point approach is
demonstrated by a comparison with the polynomial func-
tion method, and a number of test cases at various inlet
velocities are taken into consideration by the former.

2. Theoretical analysis and optimization methods
2.1. Direct problem solver

As the channel depth (D) is relatively large, the analysis
is simplified to be a two-dimensional problem. The sche-
matic of the heating channel is shown in Fig. 2. The air
is regarded as a Newtonian fluid, and the fluid properties
are assumed constant. In addition, within the millimeter-
scale channel, the flow field is considered to be steady-state,
incompressible, and laminar. Meanwhile, the effects of
thermal radiation and buoyancy are neglected. For the
air flows, laws of conservation in mass, momentum, and
energy can be expressed by the following governing
equations:

Mass: V-V =0 (1)
Momentum in x-direction : p u@_u +v Cu
Ox 0
oP
=—— 2
V(1Y) e
Momentum in y-direction: p u@ + u@
Ox 0
oP
=" + V- (uVv) 3)
oT or
Energy: pCp (uaJr Ua_y> =V - (kVT) 4)
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Fig. 2. Schematic of the heating channel.

where the velocity vector and the gradient operator are rep-
resented by ¥V =ui+vj and V= 7% +fa%, respectively.
The boundary conditions associated with the above gov-
erning equations are:

u=V, v=0, and T=T, atx=0 (5a)
T

P=P, and a—:() atx=1L (5b)
ox

V=0 and T=Ty aty=0 (5¢)

V=0 and 2—;:0 at y = h(x) (5d)

where N is the outward normal coordinate to the adiabatic
wall at y = h(x).

The above governing equations along with the boundary
conditions are solved by adopting the well-accepted finite-
element method. In this study, some physical and geomet-
rical variables are fixed. For example, the channel length
and the inlet width of the channel are fixed at 10 mm and
1.8 mm, respectively. In addition, the low and high temper-
atures (77, and Ty) are fixed at 298 and 328 K. In addition,
the thermal properties of air used in the computation are
given in Ref. [28], which are provided in the nomenclature.
Typically, in each case of simulation the thermal and the
flow fields are computed on a mesh having 21 x 31 struc-
tured 4-node two-dimensional cells. Normally, the compu-
tation time required to complete an optimization case is
approximately 10-12 hours on a personal computer with
an AMD-3GHz CPU.

It is important to mention that the emphasis of present
study is put on optimization of the millimeter-scale air
channel. For doing this, a method based on a point-by-
point technique for constructing the shape profile is devel-
oped and tested, and is then incorporated with a commonly
used optimization algorithm, the SCGM method [26]. To
the authors’ knowledge, no existing report managed to deal
with the millimeter-scale air channel design by using the
optimization method. It does not matter whether the direct
problem model is simple or complicated. What matters is
that the model is practical. For the geometry of the present
problem, a two-dimensional model is good enough for
numerical predictions. Hence, a more complicated model
is not attempted. Besides, in any cases the ideal model must

be chosen by considering the balance between accuracy and
cost.

2.2. Solver validation

For validation of the direct problem solver, a series of
tests were actually conducted, and the comparisons
between the present predictions and several existing bench-
mark solutions had been completed to ensure the adapt-
ability of the code with varying geometry under various
velocities. However, to save the space of the paper, not
all validation tests are presented and only a typical case
directly relevant to the millimeter-scale channel is provided
herein. The numerical solutions presented by Olsson et al.
[29] for the flow field in a millimeter-scale flat-walled dif-
fuser for a valve-less micropump is compared with the solu-
tions of the present direct problem solver. The results are
provided in Fig. 3 to illustrate the validity of the solver.
Fig. 3a and b show the solutions provided by Olsson
et al. [29] and the present study, respectively. In this case,
all the conditions are specified according to the informa-
tion provided in Ref. [29]. The volumetric flow rate is main-
tained at 0.0004255 m3/s, and in terms of the definition
given in Ref. [29], the corresponding Reynolds number is
460. In addition, the dimensions of the unit are provided
in Fig. 3b. The channel is of length 1.093 mm with opening
angle of 9.8° and smallest channel width of 0.08 mm. It is
found that the comparison shows close agreement between
the two sets of data. The maximum velocity is predicted to
be 6.067 m/s at the inlet with smallest width, which is
exactly equal to the value given in Fig. 3a. Meanwhile,
the small asymmetry at the outlet, which could be caused
by the asymmetric upstream conditions and was found
by the authors, is also observed in the present solution.

2.3. Optimization method

In the present study, an objective function (J) in con-
junction with the optimization process leading to the
desired channel shape is defined in the following:

J= 1 (©
[ el

L Pi—P,
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Fig. 3. Comparison of the predictions of flow field in a millimeter-scale flat-walled diffuser by the present solver with existing report [29].

where the first term in the braces on the right-hand side of
the equation represents the magnitude of the average heat
flux transferred to the air, and the second term represents
the magnitude of the average pressure gradient. The objec-
tive function is expressed by taking the reciprocal of the
summation of these two terms, and the values of C; and
C, are the weighting constants which are specified by the
users arbitrarily based on the requirement of the design
purpose. In this manner, as the objective function J is
approaching its minimum value in the optimization pro-
cess, with the definition of J, the average heat flux gradu-
ally reaches a maximum while the average pressure
gradient is being reduced to a minimum. This implies that
a lower pressure drop accompanied by a higher heat trans-
fer can be obtained. The process of weighting involves
emphasizing one of the two aspects, heat transfer or pres-

sure drop. For example, in a case that the reduction of
the pressure drop is emphasized, one lets C; <« C,. On
the contrary, when the heat transfer performance is de-
sired, one may have C; ~ (. In the present study, typically
the value of Cj is assigned to be 1.0 and G, is 200.

Let {aji=1,2,..., k} be the set of the undetermined
coefficients to be optimized in the iterative process. Differ-
ent combinations of these coeflicients represent different
shape profiles among which the optimal shape may be
found. In other words, in the optimization process, the
coefficients {aji=1,2,..., k} are updated iteratively
toward the minimization of the object function.

The minimization of the objective function is accom-
plished by using the SCGM method [26]. The method
evaluates the gradient functions of the objective function
and sets up a new conjugate direction for the updated
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undetermined coefficients with the help of a direct numeri-
cal sensitivity analysis [26]. The procedure for applying the
SCGM method is described briefly in the following:

(1) Make an initial guess for the shape profile by giving
initial values to the set of undetermined coefficients
{ali=1,2,..., k}.

(2) Use the direct problem solver to predict the thermal
and flow fields associated with the latest shape profile,
and calculate the objective function J by Eq. (6).

(3) When the objective function reaches a minimum, the
solution process is terminated. Otherwise, proceed to
step (4).

(4) Perform the direct numerical sensitivity analysis [26]
to determine the gradient functions (0J/0a)"(i=1,
2,..., k). First, give a perturbation (Aa;) to each of
the undetermined coefficients {a|i=1,2,..., k},
and then find the change in the objective function
(AJ) caused by Aa;. Then, the gradient function with
respect to each of the undetermined -coefficients
{ali=1,2,..., k} can be calculated by the direct
numerical differentiation as

oJ AJ
a_ai - Aa,- (7)
(5) Calculate the conjugate gradient coefficients 7 and

the search directions /"' for each of the undeter-
mined coefficients {¢;li =1,2,..., k} with

n
o
n Oa;

2

Vi = —| ., i=12,...k (8)
Oa;
AN

n+l __ n_n P

T, _(_Gai) +oyinl, i=1,2,...k 9)

(6) Assign a fixed value to the step sizes (i =1,2,..., k)
for all the undetermined coefficients {a]i=1,2,...,
k} and leave it unchanged during the iteration. In this
study, the fixed value is determined by a trial- and
error process, and the value is set to be 1.0 x 107°
typically.

(7) Update the undetermined coefficients and hence the
shape profile with

n+l __ n n+1
ai" =aj — BT,

i=1,2,...,k (10)
and then go back to step (2).

2.4. Description of shape profiles

The shape profile of the channel could be built by using a
polynomial function. However, not all shape profiles can be
approximated by the polynomial function. If the shape pro-
file is irregular and cannot be cast into a polynomial func-
tion accurately, there must exist a remarkable error in the
predictions. Thus, the flexibility of the method using the
polynomial function is actually limited. In the present
study, the shape profile is built by using a point-by-point

approach which uses no mathematical expression for the
channel shape. Therefore, this approach is particularly suit-
able for the design of the irregular shape profile. In the fol-
lowing, a number of test cases are taken into consideration
to demonstrate the validity of the present point-by-point
approach. For comparison, both the polynomial function
and the point-by-point approaches are applied to evaluate
the relative performance of the present approach.

2.5. Polynomial function approach

In this study, two polynomial functions are in use. The
first one is a linear polynomial function. That is

Shape function 1:  A(x) = by + byx (11)

Note that in general the channel shape profile cannot be as
simple as a linear function. The reason for using Eq. (11) is
simply for comparison. The second function is a polyno-
mial function of degree 3:

Shape function 2:  A(x) = ¢; + c2x + 367 + cqx’ (12)

When shape function 1 is applied, the coefficients b, and b,
are regarded as the undetermined coefficients to be opti-
mized in the iterative process. Similarly, when shape func-
tion 2 is applied, the undetermined coefficients are just the
coefficients ¢y, ¢», ¢3, and c¢y.

2.6. Point-by-point approach

In the point-by-point approach, the shape profile is not
defined by any mathematical expression but a series of val-
ues of the channel width at different locations along the
streamwise direction. The channel width at x=x; is
denoted by hi(i =1,2,..., k). The set of the channel widths
at all the streamwise points are regarded as the designed
variables to optimize. Since in this study there are 21 cells
in the x-direction on the mesh in use, the number of the
designed variables (k) is 21. The values of 4; at all the points
are then used to plot the shape profile in a piecewise man-
ner. Note that a smoother profile can be obtained as more
points are taken into consideration. However, a larger
number of the points means a larger group of the cells
and the undetermined coefficients. The number of the
points was chosen by considering a balance between shape
profile quality and computation cost.

In the following, a group of test cases are taken into
consideration to demonstrate the validity of the present
point-by-point approach. For the test cases, shape designs
are carried out based on the polynomial function and the
point-by-point approaches to display the relative perfor-
mance of the latter.

3. Results and discussion
Fig. 4 shows the results of channel shape design by using

the two approaches for the case at V; =0.15m/s. At this
velocity, the Reynolds number (Re = pVil/p) is equal to
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17.94. The initial guess for the channel shape is set by a
parallel-plate channel [A(x) = ;] for each case. In general,
starting from the initial guess, it required approximately
100 iterations to reach the optimal shape. In this figure,
the optimal shapes obtained by shape functions 1 and 2
are plotted with the dash-dotted and the dotted curves,
respectively. However, just because the polynomial func-
tion approach has the convergent solutions does not mean
it is correct. It is clearly found that the outcome of the
polynomial function method is limited by the function
form. In short, shape function 1 can only lead to a linear
divergent channel (with a 6.26-mm outlet height), and
shape function 2 to an optimal shape profile that can be
portrayed by a polynomial function of degree 3 (with
c;=18x%x1073, ¢,=0.7332, ¢3=-53823, and c¢;=
—1506.136). The polynomial function approach fails to
provide accurate predictions for an irregular channel.

On the other hand, the advantages of the point-by-point
approach can be clearly observed. The optimal shape pro-
file obtained by the point-by-point approach is plotted by
the solid curve in Fig. 4. The optimal channel features a
similar pattern of a divergent diffuser; however, it is seen
that this approach provides an irregular optimal shape pro-
file of the channel that definitely cannot result from the
polynomial function method. Furthermore, the minimum
values of the objective function reached by shape functions
1 and 2 are 3.259 x 1072 and 3.112 x 1073, respectively,
while by the point-by-point approach the minimum objec-
tive function is reduced to 2.836 x 107>, This implies that
the point-by-point approach is really able to portray the
irregular shape more accurately. Therefore, the approach
is suitable to be incorporated with the SCGM method to
pursue the optimal shape of the channel. Fig. 5 displays
the velocity, temperature, and pressure distributions in
the channel with optimal shape obtained by the point-by-

0.009 F
r —-—-— shape function 1
0.008 F — — — shape function 2
o point by point
0.007
0.006 |
— 0.005F
> E -
0.004 |
0.003 |
0.002
0.001 F
0 : 1 Il 1 1 I | 1 1 | I | 1 1 Il I Il 1 1 1
0 0.0025 0.005 0.0075 0.01
X[m]

Fig. 4. Comparison in optimal design for channel shape between
polynomial-function and the present point-by-point approaches, for case
at V;=0.15m/s.

point method, at V; = 0.15 m/s. The numerical predictions
of the thermal and flow fields associated with the irregular
shape profile is carried out by using the direct problem sol-
ver. It is noticed that low pressure regions are present near
the top wall at the inlet signifying possible presence of vor-
tex structures.

The value of objective function varying in iteration is
shown in Fig. 6 for the same case. It is observed that the
objective functions is slightly increased in the first 60 itera-
tions, and then is decreased rather rapidly. At the 114th
iteration, the minimum value of 2.836 x 10~ is reached.
In this figure, the initial guess, the optimal shape profile,
and the iterative shape profiles at 40th and 80th iterations
are also provided. It can be found in this figure that the
iterative shape profile experiences a greater variation in
the process and eventually attains convergence.

The optimal shapes at different inlet velocities are inves-
tigated. The inlet velocity (V}) is one of the major influen-
tial parameters affecting the heat transfer behavior and
pressure drop in the channel. Therefore, to study the effects
of the inlet velocity, the approach has been applied to
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Fig. 5. Velocity, temperature, and pressure distributions in the channel
with optimal shape obtained by the point-by-point method, at
V;=0.15m/s. (a) Velocity vector plot, (b) temperature distribution, and
(c) pressure distribution.
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Fig. 6. Variation of objective function in iteration, for the case at V; =0.15 m/s.

design the channel shape profile at different inlet velocities,
and Fig. 7 shows part of the results. In this figure, the opti-
mal shape profiles at V;=0.1 and 0.15m/s are plotted.
Based on the results shown in Fig. 7, it is found that the
channel design indeed exhibits great dependence on the
inlet velocity. The optimization process leads to a wider
channel at V;=0.1 m/s than at ;= 0.15m/s. The infor-
mation regarding the inlet and the outlet conditions of
the optimal designs is provided in a table given in this fig-
ure. It is seen that using the optimization method the aver-
age outlet temperatures of the air at V; =0.1 m/s can be
elevated to a value (314.345 K) very close to that of the
optimal case at V;=0.15m/s (314.368 K). At the same
time, the average pressure drop between the inlet and the
outlet (P; — P,) is reduced to 7.796 x 1073 Pa for the case
at V;=0.1 m/s, which is lower than the pressure drop at
V;=0.15m/s, 8.108 x 1072 Pa.

0.009

0.008

Vi=0.1 m/s

0.007 Vi=0.15m/s

0.006

0.005

0.004

UL UL LU ILBLELEL LN LN |

0.003 Vi

0.15
0.1

7, (K]
314.368
314.345

Ti[K]
298.0
298.0

P;- P, [Pa]
8.108x10
7.796x10°

0.002

0.001

AN LR

o

0.0025 0.005

X[m]

0.0075 0.01

Fig. 7. Effects of the inlet velocity on the optimal channel shape.

Note that the initial guess for the channel shape can be
given arbitrarily in a certain extent. One may have reasons
to suspect that the point-by-point method might not lead
to unique solution when different initial guesses are used.
To test the uniqueness of the predictions, in addition to
the case using the parallel-plate channel as the initial guess,
two other initial guesses are adopted: one is a linear diver-
gent channel; and the other is a linear convergent channel.
Fig. 8 shows the iterative shape profiles in the optimization
processes based on these two different initial guesses.
Results of the case using the linear divergent channel are
plotted in the left portion, and those of the case using the
linear convergent channel in the right. In a comparison
between the two cases, it is interesting to find that even
though the tentative shape profiles are quite different, the
optimal solutions of the two cases are in close agreement
regardless of the initial guesses. In addition, both the two
solutions are identical to the optimal shape profile yielded
by using the parallel-plate channel as the initial guess
shown in Fig. 6. It is also noted that the numbers of itera-
tions required to reach the optimal designs for the linear
divergent, parallel-plate, and linear convergent channels
are 106, 114, and 130, respectively. The pattern of the lin-
ear divergent channel is essentially closer to that of the
optimal channel shape; therefore, this case attains faster
convergence than the other two cases.

Performance of the optimized channel may be demon-
strated by numerical simulation in a direct comparison to
the traditional parallel-plate and the divergent channels.
For making a fair assessment, the arithmetic average
of the width of the optimized channel (k) is first calculated.
The result is # = 4.917 mm for the case at V;=0.15m/s.
The width of the compared parallel-plate channel is then
set to be 4.917 mm and the inlet velocity is also assigned
to be 0.15m/s. In this study, both the inlet velocity and
the inlet width are fixed, and hence the mass flow rate is
kept constant. The relative magnitude of average heat flux
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Fig. 8. Iterative shape profiles in the optimization process based on different initial guesses, for the case at V; =0.15 m/s.

transferred to the air can then be compared simply based
on the data of temperature rise. According to the results
shown in Table 1, it is found that the optimized channel
exhibits much higher performance than the parallel chan-
nel. As seen in this table, the temperature rise of the fluid

flowing through the parallel-plate is only 8.325 K at a pres-
sure drop of 2.315 x 1072 Pa. In the optimized channel, the
fluid temperature can be increased by 16.368 K, and the
pressure drop can be reduced to be 8.108 x 10~ Pa. In
addition, the data associated with the divergent channel
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Table 1
Performance of the optimal design for V; = 0.15m/s
Channel T, — T; (K) P;— P, (Pa) Flow field
Parallel-plate channel 8.325 2315 % 1072 0.006 |
with /i(x) =4.917 mm B
0.004
Y B
[m] B
0.002 |-
ok ..,-hepp»bpp.-.-l-pnp.-i-.
0 0.0025 0.005 0.0075 0.01
X[m]
uous
ooo4 |
Y
Divergent channel of the same inlet 16.9265 1.448 x 1072 [m ]7 -
and outlet widths as the optimal channel oo
0 B oo
X[m]
0.00&
0.004
¥
Present optimal channel 16.368 8.108 x 1073 [m]

) 0.0025 0.005 apno7s oo

X [m]

of the same inlet and outlet widths as the optimal channel
are also provided in this table. A comparison between the
divergent and the optimal channels shows that they have
nearly equal temperature rises; however, the pressure drop
of the optimal channel is much lower than that of the diver-
gent channel, 1.448 x 1072 Pa. Therefore, the relative per-
formance of the optimal channel is observed. The shape
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Fig. 9. Dependence of optimal shape on the value of C, at C; = 1.0.

profile of the channel can be optimized to meet the design
purpose by using the present optimization approach. It is
noticed that the pressure drop includes the reversible pres-
sure head increase due to area change. As a matter of fact,
the direct problem solver will automatically take into
account both the friction and the area-changing effects in
the optimization process.

Fig. 9 shows the dependence of optimal shape on the
value of C, at C; = 1.0. It is found that if the value of C;
is fixed, the value of C, can affect the resulting optimal
shape of the channel; however, the dependence of the opti-
mal design on C, is rather insensitive. As already stated
earlier, the specification is open to the users depending
on the requirement of the design purpose.

4. Concluding remarks

Shape design of a millimeter-scale air channel for
increasing heat transfer and reducing pressure drop is per-
formed. The numerical design approach is developed by
combining a direct problem solver with an optimization
method. A two-dimensional theoretical model is used to
develop the direct problem solver for predicting the ther-
mal and flow fields associated with the varying shape pro-
file during the iterative optimization process. On the other
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hand, the simplified conjugate gradient method (SCGM)
[26] is used as the optimization method to minimize the
objective function expressed in terms of the average pres-
sure drop and the average heat flux.

In this study, a method based on a point-by-point tech-
nique for constructing the shape profile is incorporated
with the SCGM method to pursue the optimal shape of
the channel. It is observed that the point-by-point
approach is really able to portray the irregular shape more
accurately, as compared with the polynomial function
approach.

In addition, the optimal shapes at different inlet velocities
are investigated, and the optimal shape profiles at ;= 0.1
and 0.15m/s are plotted. Results show that the channel
design indeed exhibits great dependence on the inlet veloc-
ity. The optimization process leads to a wider channel for
the case at V; = 0.1 m/s than at V; = 0.15 m/s. It is also seen
that using the optimization method the average outlet tem-
peratures of the air at ¥;=0.1 m/s can be elevated to a
value very close to that of the optimal case at
V; = 0.15 m/s. At the same time, the average pressure drop
between the inlet and the outlet (P; — P,) is reduced to
7.796 x 1073 Pa for the case at V; = 0.1 m/s, which is lower
than the pressure drop at V; =0.15m/s, 8.108 x 1073 Pa.

To test the uniqueness of the predictions, three different
initial guesses for the channel shape profile are used,
namely, parallel-plate channel, linear divergent channel
and linear convergent channel. It is interesting to find that
even though the tentative shape profiles are quite different,
the optimal solutions of the three cases are in close agree-
ment regardless of the initial guesses.

The performance of the optimized channel has been
demonstrated by numerical simulation in a direct compar-
ison to the traditional parallel-plate and the divergent
channels. Results show that the optimal shape profile of
the yielded by the present optimization approach channel
meets the design purpose.
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